Pseudocompactness and the cozero part of a frame

نویسندگان

  • Bernhard Banaschewski
  • Christopher Gilmour
چکیده

A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a σ-frame and to Alexandroff spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ompactification of Completely Regular Frames based on their Cozero Part

 Let L  be a frame. We denoted the set of all regular ideals of cozL by rId(cozL) . The aim of this paper is to study these ideals. For a  frame L , we show that  rId(cozL) is a compact completely regular frame and the map jc : rId(cozL)→L  given by jc (I)=⋁I   is a compactification of L which is isomorphism to its  Stone–Čech compactification and is proved that jc have a right adjoint rc : L →...

متن کامل

Pointfree Pseudocompactness Revisited

We give several internal and external characterizations of pseudocompactness in frames which extend (and transcend) analogous characterizations in topological spaces. In the case of internal characterizations we do not make reference (explicitly or implicitly) to the reals.

متن کامل

Compactifications and uniformities on sigma frames

A bijective correspondence between strong inclusions and compactifications in the setting of σ-frames is presented. The category of uniform σ-frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the σ-frame consisting of its uniform cozero part, and consequently, any compactificat...

متن کامل

The categories of lattice-valued maps, equalities, free objects, and $mathcal C$-reticulation

In this paper, we study the concept of $mathcal C$-reticulation for the category $mathcal C$ whose objects are lattice-valued maps. The relation between the free objects in $mathcal C$ and the $mathcal C$-reticulation of rings and modules is discussed. Also, a method to construct $mathcal C$-reticulation is presented, in the case where $mathcal C$ is equational. Some relations between the conce...

متن کامل

Logic. Finally, we gratefully acknowledge the use of EasyChair.

Classically, a Tychonoff space is called strongly 0-dimensional if its Stone-Čech compactification is 0-dimensional, and given the familiar relationship between spaces and frames it is then natural to call a completely regular frame strongly 0-dimensional if its compact completely regular coreflection is 0-dimensional (meaning: is generated by its complemented elements). Indeed, it is then seen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997